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Abstract
Perceptual bistability, characterized by stochastic alternations between two neuronal population activities,
reflects the brain’s processing of information that can be perceived in two distinct ways. This study inves-
tigates the dynamics of a proposed attractor network model, which identifies noise as the primary driver
of these alternations. We reconstructed the rate-based version of this model using differential equations
and the Euler method to systematically explore the nuanced impacts of noise, adaptation, and excitatory
inputs on the model’s behavior. Our results reveal that adaptation and noise critically affect the duration
and distribution of temporal intervals between state transitions, profoundly influencing the model’s abil-
ity to mimic experimental observations. Furthermore, we found that careful parameter selection is crucial
in constructing network models that accurately capture perceptual bistability. This research not only un-
derscores the crucial roles of noise and adaptation in the dynamics of alternation but also highlights the
challenges inherent in simulating complex biological phenomena through computational models.
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1. Introduction 8

In circumstances where a single perceptual stimulus allows two distinct interpretations, observers 9

experience a phenomenon known as perceptual bistability. This occurs, for example, during binoc- 10

ular rivalry when each eye is presented with a different image. In such instances, the neuronal 11

populations supporting the perception of each image engage in a competitive interaction, where 12

the population with higher neural activity dominates the perception. This competition results in 13

the observer’s perception alternating over time. Although extensive experimental and theoretical 14

research has been conducted to understand this neural phenomenon, the precise mechanisms un- 15

derlying perceptual bistability remain unclear. In this project, we explore the theoretical model 16

proposed by Moreno-Bote et al. (2007) in their paper "Noise-Induced Alternations in an Attractor 17

Network Model of Perceptual Bistability." [1] This model aims to explain the dynamics of alternation 18

by attributing it to ongoing noise within the system. Furthermore, we reconstruct and examine the 19

rate-based model outlined in the primary literature, assessing how variations in factors such as the 20

adaptation effect, feedforward input, or noise influence the model’s ability to simulate perceptual 21

bistability. 22

2. Primary Literature and Report 23

In their research, Moreno-Bote and colleagues present a noise-driven attractor model of perceptual 24

bistability. Unlike earlier models that attributed perceptual alternations primarily to slow adapta- 25

tion effects acting upon the dominant population, their approach emphasizes noise in the synaptic 26

activities as the principal driver. This perspective presents a fundamentally different interpretation 27

of neural behavior and introduces a distinct modeling structure. The insights from this study are 28

crucial for reconstructing the theoretical model for our project and addressing our research ques- 29

tions. Therefore, this section delves into the experimental basis of perceptual bistability as detailed 30
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in their work, the architecture of their model, its capacity to replicate experimental behaviors, and 31

the novel findings and predictions it yields. 32

To construct and evaluate a theoretical model of neural phenomenon, it is crucial to comprehend the 33

experimental properties of the behavior it seeks to capture. Levelt’s 1965 study on binocular rivalry 34

provides a clear summary of important observations essential for modeling perceptual rivalry [2]. 35

First, his "Proposition II" indicates that weakening the stimulus strength (i.e., the image contrast) in 36

one eye does not shorten its duration of perceptual dominance. Instead, it causes the rival image 37

to dominate perception for longer periods. Second, "Proposition IV" suggests that strengthening 38

the image contrast in both eyes simultaneously decreases the dominance duration for both image 39

interpretations, thereby increasing the alternation rate. Lastly, multiple studies have discovered that 40

aggregating the durations during which each population dominates results in a skewed Gaussian 41

distribution [2, 3]. These findings are critical for determining the structure of the attractor model 42

and assessing the viability of various models. 43

Previous theoretical approaches have leveraged models driven by adaptation effects to explain these 44

experimental observations. As validated by our own model findings in Section 4, Subsection 4.1, 45

these oscillator models produce a perfectly periodic alternation in the absence of noise, due to the 46

deterministic nature of adaptation. In a state plane that displays the firing rates of the two neuronal 47

populations, each axis representing one population, the perceptual alternation under the oscillator 48

model appears as a cyclic trajectory. In this scenario, noise plays a limited role, contributing just 49

enough randomness to introduce some degree of variability, but not enough to disrupt this limit cy- 50

cle. Most importantly, the removal of noise from the system does not stop the perceptual alternations 51

under the oscillator model. 52

On the other hand, the noise-based attractor model features two stable attractor points within the 53

state plane, each representing the dominance of a different neuronal population. In this model, 54

alternation occurs due to a force that helps the system overcome the energy barrier between the two 55

attractors. Noise acts as the primary driving force in this process, and alternations between states 56

cease entirely when noise is removed. Although adaptation effect is also present in this model, it 57

alone is not a sufficient factor to induce state transitions, a topic that will be explored further later 58

in our discussion. 59

This attractor-based framework utilizes energy functions designed to align with experimental ob- 60

servations of perceptual bistability. 61

E(∆r) = ∆r2(∆r2 – 2) + gA(∆r – 1)2 + gB(∆r + 1)2 (1)

Primarily, the model’s energy function includes two local minima, representing the attractor points. 62

A key modification, diverging from the standard energy function, is implemented to adhere to Lev- 63

elt’s Proposition II. Here, input strengths are cross-coupled, allowing increased input strength to one 64

neuronal population to lower the energy barrier for the other, leading to the desired effect of short- 65

ening the perceptual dominance duration of the rival image instead of extending its own [4]. Addi- 66

tionally, compliance with Levelt’s Proposition IV is achieved by introducing a local inhibitory sub- 67

population structure. These subpopulations gather all external stimulus input to both populations 68

and exert inhibitory effects to each, proportionate to their activity levels. This arrangement ensures 69

that increasing overall image contrast reduces dominance durations for both eyes, thus facilitating 70

rapid alternation. Along with these main features, the model incorporates further enhancements 71

such as strong recurrent excitatory connections to accurately replicate the experimental behaviors 72

observed. 73

Although the attractor model denies the role of adaptation in driving alternations, it acknowledges 74

its significance in shaping model dynamics. Adaptation ensures that the distribution of dominance 75
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durations reflects the skewed Gaussian pattern observed in experimental results. As confirmed by 76

our findings in Section 4, Subsection 4.2, noise-driven alternation without adaptation leads to an 77

exponential distribution of dominance durations [5]. However, incorporating adaptation resolves 78

this by gradually reducing the depth of minima in the energy function, thus facilitating the transition 79

across energy barriers over time. As a result, shorter dominance durations are less frequent, aligning 80

with the skewed Gaussian distribution noted in the primary literature and verified by our analysis in 81

Section 4, Subsection 4.4. Furthermore, comparing dominance durations across different adaptation 82

levels revealed that the optimal degree of adaptation is when it is weak—having enough effect to 83

produce a skewed Gaussian distribution, yet not so strong as to create a less variable distribution or 84

destroy the energy minima. 85

In summary, the energy equation structures and components discussed above are essential for con- 86

structing an accurate attractor network model of perceptual bistability and have been integrated 87

into the network dynamics as follows: 88

τ
d
dt
rA = –rA + f [αrA – βrB + gA – (gA + gB)rA + nA] (2)

τ
d
dt
rB = –rB + f [αrB – βrA + gB – (gA + gB)rB + nB] (3)

Here, gA and gB represent the input strengths, rA and rB are the firing rates of neuronal populations, 89

nA and nB denote noise with zero mean and deviation σ, and f is a function that calculates the firing 90

rate of a population based on its input. Further discussion of this equation and its implementation 91

in our project can be found in the Methods section (Section 3). 92

Using both rate-based and cell-based simulation networks constructedwith these equations, Moreno- 93

Bote and colleagues demonstrate that the attractor model aligns closely with numerous experimental 94

findings. Specifically, examining the input noise averages before and after each alternation in the 95

simulations revealed patterns similar to those Lankheet observed in binocular rivalry experiments 96

[6]. In both studies, researchers noted a simultaneous increase in noise in the population switch- 97

ing from suppressed to dominant, and a decrease in the population transitioning from dominant to 98

suppressed. These findings were also replicated in our simulations (Section 4, Subsection 4.3). Fur- 99

thermore, the authors discuss recent studies that offer significant experimental evidence that noise, 100

rather than adaptation, is the primary driver of alternation in perceptual bistability [4, 7, 8]. 101

The attractor network model not only reflects prior research on perceptual bistability but also offers 102

novel insights and predictions that may inform future studies. First, in their spiking cell-based neu- 103

ral network, the activity of the dominant population during rivalry did not increase with heightened 104

input stimulation, contrary to expectations based on non-rivalrous conditions where neuronal activ- 105

ity typically correlates with input strength. Second, both the dominant and suppressed populations 106

exhibited lower activity rates compared to scenarios without rivalrous perception. These intriguing 107

findings from the simulation could be further explored and validated experimentally using functional 108

magnetic resonance imaging (fMRI) or electrophysiology. 109

In conclusion, "Noise-Induced Alternations in an Attractor Network Model of Perceptual Bistabil- 110

ity" by Moreno-Bote et al. presents a new framework for understanding the neural mechanisms 111

behind perceptual bistability by positioning noise, rather than adaptation, as the primary driver of 112

alternation in their model. The model incorporates novel structural elements in the energy function 113

and additional components in the differential equations, such as recurrent excitatory connections 114

and inhibitory populations, to ensure that the model’s behavior aligns with findings from previ- 115

ous experiments. Additionally, it acknowledges the role of weak adaptation in producing a desired 116

distribution of dominance durations. Using this model architecture, the authors developed both fir- 117

ing rate mean-field and spiking cell-based models to simulate the dynamics, effectively capturing 118
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experimental observations and offering predictions on previously undiscovered aspects of percep- 119

tual bistability. Overall, this paper provides a significant foundation for our research project, which 120

reconstructed and explored their proposed dynamical model. 121

3. Methods 122

Differential Equations Moreno-Bote et al.’s work features a set of differential equations that 123

regulate model variables, thoroughly discussed in their methodology section. One such equation, 124

previously introduced in our literature review (Section 2), describes the rate of change in firing rate 125

for each neuronal population, factoring in feedforward excitatory connections, the firing rate of 126

the competing population, input stimulus strength, and noise. In our project, we incorporated this 127

equation to develop our rate-based model while ensuring the inclusion of an adaptation variable. A 128

notable departure from the primary literature is our focus on modeling a pair of neurons within a 129

circuit rather than larger populations. Additionally, for a more efficient design, we combined the 130

excitatory input terms into a single expression within the equation and removed the term –(gA + 131

gB)rA. 132

τ
ds1
dt

(t) = –s1(t) + f (–ws2(t) – ga1(t) + b(1 + n1(t))) (4)

τ
ds2
dt

(t) = –s2(t) + f (–ws1(t) – ga2(t) + b(1 + n2(t))) (5)

Table 1. Model Parameters and Variables

Component Notation Value Remarks

synaptic activity s1, s2 variable
inhibitory weight w 12 constant
synaptic time-constant τ 20 ms constant
feedforward input b 6 constant
firing rate function f sigmoid function
noise n1, n2 normal distribution
noise time-constant τn 4 ms constant
noise standard deviation σ constant
adaptation a1, a2 variable
adaptation time-constant τa 200 ms constant
adaptation effect g constant

This ordinary differential equation computes the synaptic activity variables, also known as firing 133

rates. The notations used in this equation are detailed in Table 1. The equation includes three pri- 134

mary inputs to the sigmoid firing rate function. Firstly, –ws2(t) represents the firing rate of the com- 135

peting neuron at a given time, scaled by a synaptic inhibitory weight, serving as a cross-inhibition 136

mechanism for winner-takes-all dynamics. Secondly, –ga1(t) accounts for the adaptation effect, with 137

a1(t) modulated by the parameter g. The adaptation variables a1(t) and a2(t) are further delineated by 138

their respective differential equations. Lastly, b(1 + n1(t)) denotes the excitatory input, functionally 139

summarizing the original equation’s terms αrA, gA, and nA. Here, the feedforward input strength 140

parameter b is modulated by random noise. Collectively, these three inputs feed into the firing rate 141

function, f (x) = ex
1+ex , dictating the computation of neuronal firing rates in our simulation. 142
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Additionally, the adaptation and noise variables are each regulated by their own differential equa- 143

tions. The adaptation equation is structured such that its effect is inhibitory and proportional to the 144

neuron’s current firing rate, modulated by a time constant (τa) significantly slower than the time 145

constant for the synaptic activity variables. 146

τa
da1
dt

(t) = –a1(t) + f (–ws2(t) – ga1(t) + b(1 + n1(t))) (6)

τa
da2
dt

(t) = –a2(t) + f (–ws1(t) – ga2(t) + b(1 + n2(t))) (7)

Conversely, the noise is derived from a Gaussian distribution and then refined through a low-pass 147

filter to emulate the characteristics of noise typically observed in biological systems. 148

τn
dn1
dt

(t) = –n1(t) + σ
√
2τnξ1 (8)

τn
dn2
dt

(t) = –n2(t) + σ
√
2τnξ2 (9)

Each of these equations was implemented in MATLAB and numerically solved to simulate a circuit 149

of neurons in perceptual bistability. 150

EulerMethod Ourmodel’s differential equations, defining synaptic activity, adaptation, and noise, 151

necessitated numerical solutions to compute the value of these variables at each time step. We em- 152

ployed the Euler Method for solving ordinary differential equations (ODEs). Beginning with speci- 153

fied initial conditions, this method iteratively approximates the solution at subsequent time points 154

by advancing along the curve’s tangent. The general formula is expressed as: 155

yn+1 = yn + ∆t × dy
dt

����
t=tn

(10)

For an accurate approximation using the Euler Method, a sufficiently small time step,∆t, is essential; 156

our model employed a step size of 0.1 ms, thereby updating variable values every 0.1 milliseconds. 157

Switch-Triggered Average (STA) The average behavior of the input stimulus around the time it 158

triggers a state switch provides valuable insight into the patterns of stimuli that affect alternation. 159

The Switch-Triggered Average (STA) computation method collects this mean input stimulus 100 mil- 160

liseconds before and after each state switch. In our study, we utilized the cross-correlation function 161

in MATLAB to compute the STA efficiently. The first input for our cross-correlation is a binary vec- 162

tor where each element corresponds to a time point and indicates whether a state switch occurred. 163

In this vector, a value of 1 signifies a transition at that specific time point, while a 0 indicates no 164

transition. The second input is the input stimulus itself, represented as b(1 + n(t)) in our model, 165

with each element reflecting the exact stimulus value at corresponding time points. Employing a 166

technique similar to calculating spike-triggered averages in neural spike train studies, we computed 167

cross-correlation such that slicing the resultant vector at the desired time lags and dividing by the 168

total number of transitions yields the STA directly. 169

STA(τ) =
1
N

N∑︁
i=1

v(ti – τ) =
1
N

∑︁
t

w(t)v(t – τ) =
1
N
Cwv(–τ) (11)

In this equation, N represents the total number of spikes, w is the binary vector denoting tran- 170

sitions, v is the stimulus vector, t denotes the time points, and τ signifies the lag for which the 171

cross-correlation is calculated. This method allows us to observe the characteristics of the stimulus 172

that either prompts a neuron to become dominant or causes it to become suppressed. 173
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4. Results 174

The primary goal of our project is to reconstruct the rate-based network structure described in the 175

primary literature and to conduct an in-depth analysis of the roles and effects of various components 176

on model behavior. Initially, we will eliminate the role of noise, allowing the model’s alternations 177

to be solely driven by adaptation. Using this oscillator model, we will explore different factors that 178

influence the period of oscillation, which directly reflects the model’s alternation rate. Subsequently, 179

we will evaluate a model driven entirely by noise to examine how the noise variance impacts the 180

model behavior, specifically the distribution of time intervals between adjacent alternations. Ad- 181

ditionally, we will employ the switch-triggered average (STA) method, as proposed in the primary 182

literature, to further investigate the impact of noise on alternations. Ultimately, using the model 183

that integrates both noise and adaptation—identified as most effective by Moreno-Bote et al.—we 184

will compare how the distribution of time intervals differs from the model without adaptation and 185

assess how noise variance influences this distribution. 186

4.1 Modeling I 187

Our initial investigation entailed removing the noise effect in our model to replicate the originally 188

proposed oscillator model of perceptual bistability. We achieved this by setting the noise standard 189

deviation parameter, σ, to zero. Consequently, adaptation effects and cross-inhibition mechanisms 190

drove the competition in synaptic activity between neurons during our 4,000-millisecond simulation. 191

The firing rates, denoted as s1 and s2, are plotted against time in Figure 1. As expected, this setup 192

resulted in a periodic alternation between the firing rates of neurons 1 and 2, where each neuron 193

maintained a consistent period of dominance before yielding control to the other. 194

Figure 1. Synaptic Activity in an Adaptation-Driven Model

We then focused on analyzing how parameters such as the strength of adaptation effect and the input 195

drive influence the oscillation period in this model. The parameter g, which scales the adaptation 196

variables a1 and a2, determines the extent of adaptation’s impact on the neuron’s firing rate. Since 197

adaptation—a slow force like synaptic depression—counteracts the firing efficacy of the dominant 198

neuron over time, we anticipated that a stronger adaptation effect would accelerate the reduction 199

in activity, resulting in frequent alternations and shorter oscillation periods. This hypothesis was 200

tested by varying g and observing the oscillation period during the bistable competition, as shown in 201

Figure 2. Consistent with our expectations, the period of oscillation decreased as the strength of the 202

adaptation effect rose from 10 to 30. Moreover, as we adjusted g up to 50, the mean oscillation period 203

demonstrated a decay resembling an inverse power law. This outcome confirms that the strength 204

of the adaptation effect inversely affects the oscillation period in the adaptation-driven model of 205

perceptual bistability. 206
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Next, we hypothesized that the oscillator model’s strength of the input drive, denoted as b in our 207

model and comparable to stimulus strength–that is, image contrast–in binocular rivalry experi- 208

ments, would have a positive effect on the oscillation period. Since feedforward input enables high- 209

activity neurons to sustain dominance, we anticipated that it would extend the oscillation period, 210

countering the adaptation effect. The results presented in Figure 3 confirm that the oscillation pe- 211

riod indeed lengthens as b is increased. However, a fundamental characteristic of perceptual bista- 212

bility is that the alternation period shortens with stronger stimuli. This discrepancy underscores 213

the limitations of oscillator models to fully replicate the behavioral dynamics observed in perceptual 214

bistability. 215

Figure 2. Dependence of Oscillation Period on the Strength of the Adaptation Effect

Figure 3. Dependence of Oscillation Period on the Strength of the Feedforward Input
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4.2 Modeling II 216

This time, we removed the influence of adaptation to assess an attractor model’s behavior, where 217

alternation is solely due to noise. Unlike the periodic alternations of the purely adaptation-driven 218

model discussed in Section 4, Subsection 4.1, noise-driven model yields irregular fluctuations be- 219

tween the two neurons’ firing rates, demonstrating stochastic alternations as shown in Figure 4. 220

This matches the highly stochastic patterns observed in binocular rivalry experiments [9]. Using 221

the noise-driven model, we further analyzed the distribution pattern of the temporal intervals be- 222

tween successive alternations as well as their average. 223

Figure 4. Synaptic Activity in a Noise-Driven Model

Figure 5. Distribution of Time Intervals Between Adjacent Switches in a Model without Adaptation

Also known as dominance duration distribution, the distribution of temporal intervals between al- 224

ternation events serves as a critical measure of a model’s biological fidelity. Experimental stud- 225

ies have shown that this distribution typically follows a skewed Gaussian, a finding successfully 226

replicated by Moreno-Bote and colleagues in their noise-driven model with the inclusion of weak 227

adaptation [2, 3]. In our study, we recorded the temporal intervals between alternations during a 228

40,000-millisecond simulation and found that, without the influence of adaptation, the distribution 229

tends to an exponential form, as depicted in Figure 5. 230

Furthermore, we examined the impact of noise standard deviation, denoted by the parameter σ, 231

on the average duration of a single neuron dominating the perception. With our noise variables 232

normally distributed around a mean of zero, a higher σ introduces greater variability in n1 and n2, 233

increasing the likelihood of randomly surpassing the energy barrier between two states. Conse- 234

quently, we hypothesized that a larger σ would lead to shorter average temporal intervals between 235

alternations. Our results, as depicted in Figure 5, confirmed this hypothesis. However, while stan- 236

dard deviation values below 5 noticeably conformed to this trend, the differences in mean temporal 237

intervals became less pronounced as σ increased beyond 5. This suggests a diminishing impact of 238

noise standard deviation on facilitating state alternations past a certain threshold. 239
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In summary, a model that relies solely on noise to transition between two bistable states produces 240

irregular alternation patterns, in contrast to those generated by an adaptation-driven model. This 241

discrepancy opened an avenue to analyze how temporal intervals between alternations are dis- 242

tributed—an analysis unfeasible in oscillator models with their inherently periodic intervals. As 243

anticipated, without the influence of adaptation, the dominance durations in our model followed an 244

exponential distribution, deviating from biological reality. Additionally, we observed that increased 245

noise variability reduced the average dominance durations by facilitating the transition over the 246

energy barrier. 247

4.3 Analysis I 248

Moreno-Bote and colleagues investigate noise patterns immediately before and after each state tran- 249

sition to understand how noise facilitates the perceptual shift from one neuronal population to an- 250

other. They describe this analysis as the switch-triggered average (STA). The findings suggest that 251

alternation typically occurs when there is a sharp increase in noise to the previously suppressed 252

population concurrent with a sharp decrease in noise to the dominating population. We replicated 253

this analysis in our entirely noise-driven model to verify these findings. 254

It is important to highlight that our model simplifies the excitatory inputs to the neuron using the 255

term b(1 + n(t)), in contrast to the model described in the primary literature. This term encompasses 256

feedforward excitation, input stimulus, and noise. Our objective was to investigate how these ex- 257

citatory inputs influence state transitions. We simulated neuronal activity for 40,000 milliseconds, 258

capturing the value of b(1 + n(t)) 100 milliseconds before and after each perceptual state transition. 259

Then, this data was analyzed using STA computation methods to assess the overall trends in excita- 260

tory inputs. A detailed discussion of the STA calculation, employing cross-correlation, is provided 261

in the Methods section 3. 262

Figure 6. Switch-Triggered Average of the Stimulus

The results are presented in Figure 6. The left plot shows the average excitatory inputs to neurons 1 263

and 2 during in-to-out transitions, where neuron 1 is displaced by the increasing synaptic activities 264

of neuron 2. The right plot displays the excitatory inputs during the reverse transitions. In both 265

cases, the neuron gaining dominance undergoes a sudden increase in excitatory input arising from 266

noise fluctuations. Concurrently, a notable decrease in the STA indicates a sharp decline in input to 267

the neuron losing dominance. Therefore, our model demonstrates that perceptual alternation occurs 268

when random noise fluctuations produce simultaneous increased and decreased input to previously 269

suppressed and dominant neurons, aligning with findings fromMoreno-Bote et al. and experimental 270

results by Lankheet [6]. 271
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4.4 Analysis II 272

Figure 7. Distribution of Time Intervals Between Adjacent Switches in a Model with Adaptation and Noise

Figure 8. Comparison of Time Interval Distributions in Models With and Without Adaptation

We further refined our model to incorporate both adaptation and noise. As discussed in the primary 273

literature, incorporating adaptation effects enabled our model to generate dominance duration dis- 274

tributions that align more closely with a skewed Gaussian (Figure 7), rather than the exponential 275

distribution observed in Section 4, Subsection 4.2. The mechanism of slow adaptation adds a time- 276

dependent persistence to dominance states, gradually increasing the likelihood of transitions as time 277

progresses. Adaptation moderates the depth of the energy function’s minima for the dominant pop- 278
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ulation just enough to facilitate transitions without eliminating the energy barrier, thus achieving 279

a distribution of dominance durations that conforms to experimental data. This contrast is clearly 280

depicted in Figure 8, which compares temporal interval distributions from models with and without 281

adaptation. 282

An interesting research question is how noise standard deviation, σ, influences the distribution of 283

dominance durations in the presence of adaptation. We investigated this by plotting the temporal 284

interval distributions at four different σ values ranging from 1 to 20, as shown in Figure 7. Notably, 285

the skewed Gaussian distribution becomes more pronounced with higher σ values. At very low σ, 286

such as 1, the dominance durations are heavily skewed towards shorter intervals, resembling an 287

exponential distribution more than a skewed Gaussian. This likely occurs because low σ values 288

minimize noise impact, allowing adaptation to take over the alternation process. Conversely, σ 289

values above 5 produce a skewed Gaussian distribution, which aligns with expectations for a model 290

that incorporates both adaptation and noise and is consistent with experimental data. 291

5. Discussion 292

By reconstructing a simplified version of the originally proposed attractor model, we examined the 293

functional impacts of various model components on alternation dynamics. Initially, we developed 294

an oscillator model of perceptual bistability, confirming our hypothesis that stronger adaptation 295

effects shorten the oscillation period (Figure 2). Conversely, increased strength of the feedforward 296

input extended the oscillation period (Figure 3), highlighting the limitations of oscillator models in 297

accurately representing biological systems. We then explored the model’s noise-driven counterpart, 298

demonstrating that dominance duration distributions form an exponential function in the absence of 299

adaptation (Figure 5). Our findings also revealed that larger noise standard deviations significantly 300

reduce average dominance durations, though their impact stabilizes beyond a certain threshold. 301

Further, we replicated the switch-triggered average analysis from the primary literature to assess 302

how noise triggers state transitions in our model (Figure 6). Lastly, using an ideal model structure 303

that includes both noise and adaptation, we found that only with a sufficiently high noise standard 304

deviation does the model produce the desired skewed Gaussian distribution of dominance durations 305

(Figure 7). Overall, our project underscores the crucial roles of noise, adaptation, and parameter 306

selection in crafting a model that accurately reflects the dynamics of perceptual bistability. 307

Nonetheless, it is crucial to acknowledge the inherent limitations of our study due to the simplifica- 308

tions introduced when adapting the model from the primary literature. A significant simplification 309

was combining all excitatory inputs to the neurons—such as recurrent excitatory connections, stim- 310

ulus input, and noise—into a single term in our equation. While this approach facilitated a more 311

straightforward analysis of excitatory input, it obscured the distinctions between crucial elements 312

of the original model. For example, increasing the parameter b(1 + n(t)) in Section 4, Subsection 4.1 313

could be interpreted as either enhancing the strength of feedforward input or the stimulus intensity, 314

which differ as internal versus external excitation sources. Future studies should consider separating 315

these sources to allow a more detailed analysis of their impacts. 316

Furthermore, a critical behavioral component from the original attractor network model was omit- 317

ted in our simplified version. In the primary literature, Levelt’s Proposition IV was implemented by 318

incorporating a local inhibitory subpopulation, represented by the term –(gA + gB)rA. This configu- 319

ration allowed for an increased total stimulus to decrease the dominance durations of both neurons. 320

However, unlike other inhibitory mechanisms such as cross-inhibition from rival populations or 321

time-dependent adaptation, this factor was excluded in our project model. Although not central to 322

our research focus, its absence raises concerns about the accuracy of our analysis, as this component 323

could have influenced the dynamics observed in our study. For instance, this inhibitory factor, simi- 324
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lar to adaptation in that it is proportional to the neuron’s firing rate but acts more rapidly, could have 325

led to significantly shorter dominance durations. This highlights the ongoing challenge of balancing 326

simplicity and comprehensiveness in modeling to adequately reflect biological complexity. 327

Moving forward, it will be helpful to progressively enhance our model’s complexity in a controlled 328

manner. By systematically reintroducing the elements we previously omitted, we can better under- 329

stand their individual and combined effects on the model’s behavior. This approach will not only 330

overcome the current study’s limitations but also enrich our insight into the underlying dynamics 331

of perceptual bistability. Additionally, recreating the cell-based network described in the original 332

research and exploring how various parameters influence its dynamics could offer valuable compar- 333

isons to our rate-based findings, broadening the scope of our analysis. 334
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