
3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 1/31

I. INTRODUCTION

This project examines neuronal activity in the cerebellum during a classical conditioning trial.

The question I will be investigating is how the rates of learning an association (acquisition)

and rates of extinguishing the association (extinction) differ in cerebellar cells. I will be using

datasets generated from a computational simulation developed by the lab of Dr. Michael

Mauk. I chose this topic because I am interested in learning how a computational simulation

can model the activities of neurons. Moreover, I’m interested to see how different cerebellar

neurons act while it undergoes learning.

The simulation models the behavior of different neurons in the cerebellum during an eyelid

conditioning trial, which is one of the widely used classical conditioning methods. The data I

gathered from the simulation are raster files of spike activities from 2 different type of

neurons (Purkinje cell, Deep Nucleus cell) over time, as the assocation is learned and

extinguished. Each trial that the neurons undergo is either strengthening the learned

association or weakening it. In my experiment, the first 500 trials were designed to

strengthen the association (acquisition) and the following 500 trials were designed to

weaken the association (extinction). In summary, my dataset includes activity of 2 different

types of cerebellar neurons over 1000 trials. Within each trial, spike activity of all neurons

are recorded for a certain period of time whose units will be in milliseconds.

With this data, I will be able to analyze the neuron activity and examine the rates of

acquisition and extinction in the cerebellum. This project will allow me to gain a deeper

understanding of computational simulation of neurons and answer the question of whether

the pattern of acquisition and extinction shows a significant difference.

II. DATA ORGANIZATION

This section is where necessary libraries and datasets are imported. The initial datasets are

in a binary format, and are later reshaped according to how the information is organized. I

will be using 10 different data files in total. They are as follows:

Purkinje cell activity file while the interstimulus interval (ISI) is 250 ms, 500 ms, 750 ms,

1000 ms, and 1250 ms

Deep Nucleus cell activity file while the interstimulus interval (ISI) is 250 ms, 500 ms,

750 ms, 1000 ms, and 1250 ms

Background Information:

Interstimulus interval (ISI) is an important concept in classical conditioning, which is why

I gathered cell activity data from various ISIs and will be comparing the result

accordingly. ISI is the temporal interval between the two stimulus that the neuron has to

learn to associate with one another. For instance, let's say a trial has the ISI of 250 ms.

One stimulus will be presented after the initial 400 ms has passed. (This onset timing

will be the same across all trials.) The first stimulus will last for the length of the ISI (250

ms). At the end of this 250 ms, the second stimulus will be presented to the brain. In the

case where the ISI is 500 ms, the temporal interval between the two stimuls will be 500

ms.

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 2/31

In eyelid conditioning, the first stimulus presented (conditioned stimulus) is an auditory

stimulus, a simple tone. The following stimulus (unconditioned stimulus) is a physical

puff to the eye that makes the eyelid blink. As the two stimuli are consistently presented

after one another, neurons will learn the association and start responding when the

conditioned stimulus is presented (conditioned response). When only the first stimulus

is consistently presented without the second stimulus following, the learned association

will gradually be extinguished.

In [1]: # -------- Import Libraries -------- #

import numpy as np #

this library is used for creating and manipulating arrays

import matplotlib.pyplot as plt #

this library is used for plotting graphs

import scipy.ndimage #

this library is used when defining a function to smooth the

data

from sklearn.linear_model import LinearRegression #

this library is used for statistical testing with Linear

Regression

import os #

this library is used for creating a gif

import imageio #

this library is used for creating a gif

from PIL import Image #

this library is used for creating a gif

from IPython.display import Image #

this library is used for displaying the gif I created

from scipy import stats #

this library is used for paired t-test

-------- Loading Temporary Data Files --------

this is the list of different ISIs (i.e. interstimulus

intervals) from which neuron activity files will be gathered

and anaylzed

this list is defined so that I can make a reference to this

list when importing files later in this block of code

filelist = [250, 500, 750, 1000, 1250]

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 3/31

The data I loaded are stacked as a one-dimensional array, while the information are stored in

a three-dimensional structure. Therefore, I'm going to convert the temporary data files into

true raster data files by reshaping.

load Purkinje cell activity data as a temporary file from

each isi

tempfiles_pc = {} # create a dictionary

to store temporary data files of Purkinje cells

for isi in filelist: # loop through the

different ISIs that I prepared in the 'filelist' list above

 # code below loads and stores each file as a value in the

dictionary 'tempfiles_pc'

 # the key for each file will be the ISI number loaded

from the list 'filelist'

 tempfiles_pc[isi] = np.fromfile("data/PCraster"+str(isi),

dtype=np.ubyte)

load Deep Nucleus cell activity data as a temporary file

from each isi

tempfiles_nc = {} # create a dictionary

to store temporary data files of Deep Nucleus cells

for isi in filelist: # loop through the

different ISIs that I prepared in the 'filelist' list above

 # code below loads and stores each file as a value in the

dictionary 'tempfiles_nc'

 # the key for each file will be the ISI number loaded

from the list 'filelist'

 tempfiles_nc[isi] = np.fromfile("data/NCraster"+str(isi),

dtype=np.ubyte)

In [4]: # -------- Converting Temporary Data Files to Raster Files --

------ #

NUM_PC_CELLS = 32 # number of Purkinje cells in the

simulation (Purkinje cell = PC)

NUM_NC_CELLS = 8 # number of Deep Nucleus cells in the

simulation (Deep Nucleus cell = NC)

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 4/31

reshape each Purkinje cell data in 'tempfiles_pc' into

raster data

rasterfiles_pc = {} # create a new dictionary to

store reshaped Purkinje cell data

for isi in filelist: # loop through the different

ISIs that I prepraed in the 'filelist' list above

 # code below reshapes each file in 'tempfiles_pc' and

stores it as a new file in 'rasterfiles_pc'

 # the key for each file will be the ISI number loaded

from the lsit 'filelist'

 rasterfiles_pc[isi] =

tempfiles_pc[isi].reshape(NUM_PC_CELLS, 1000, 400+isi+400)

 # in each of the new reshaped file, the spike data is

organized as 32 (= number of Purkinje cells) sets of 1000 (=

number of trials) rows and 400*2+j (= trial length in ms)

columns

 # there are 1000 trials because the first 500 will be

acquisition trials and the following 500 will be extinction

trials

 # trial length is calculated as 400+isi+400 because:

 # onset timing (400 ms) + interstimulus interval

('isi' ms) + 400 ms extra after both stimulus is presented

reshape each Deep Nucleus cell data in 'tempfiles_nc' into

raster data

rasterfiles_nc = {} # create a new dictionary to

store reshaped Deep Nucleus cell data

for isi in filelist: # loop through the different

ISIs that I prepraed in the 'filelist' list above

 # code below reshapes each file in 'tempfiles_nc' and

stores it as a new file in 'rasterfiles_nc'

 # the key for each file will be the ISI number loaded

from the lsit 'filelist'

 rasterfiles_nc[isi] =

tempfiles_nc[isi].reshape(NUM_NC_CELLS, 1000, 400+isi+400)

 # in each of the new reshaped file, the spike data is

organized as 32 (= number of Purkinje cells) sets of 1000 (=

number of trials) rows and 400*2+j (= trial length in ms)

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 5/31

Then, I combine the raster data from every cell during a given trial number and time point so

that I can plot a Peristimulus Time Histogram (PSTH) of neuron activity.

columns

 # there are 1000 trials because the first 500 will be

acquisition trials and the following 500 will be extinction

trials

 # trial length is calculated as 400+isi+400 because:

 # onset timing (400 ms) + interstimulus interval

('isi' ms) + 400 ms extra after both stimulus is presented

In [5]: # -------- Defining Smoothing Functions -------- #

codes below define half-guassian smoothing function

this is used for smoothing the psth graph

psth graph has to be smoothed because it has a lot of noise

to start with

details of this function is not necessary for my project

def halfgaussian_kernel1d(sigma, radius):

 sigma2 = sigma * sigma

 x = np.arange(0, radius+1)

 phi_x = np.exp(-0.5 / sigma2 * x ** 2)

 phi_x = phi_x / phi_x.sum()

 return phi_x

def halfgaussian_filter1d(input, sigma, axis=-1, output=None,

 mode="constant", cval=0.0,

truncate=4.0):

 sd = float(sigma)

 lw = int(truncate * sd + 0.5)

 weights = halfgaussian_kernel1d(sigma, lw)

 origin = -lw // 2

 return scipy.ndimage.convolve1d(input, weights, axis,

output, mode, cval, origin)

-------- Defining a Function to Convert Raster Data to PSTH

Data -------- #

def raster_to_psth(data):

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 6/31

 '''

 This function converts the input data from raster format

to psth format

 '''

 xyz = data.shape # x is total

number of cells, y is total number of trials, z is total

number of time points

 psthdata = np.zeros((xyz[1],xyz[2])) # 'psthdata' is a

numpy array with row as the num of trials and column as the

num of time points

 for i in range(0,xyz[0]): # loop through

all cells in the input data (xyz[0] is the total number of

cells)

 for j in range(0,xyz[1]): # loop through

all trials in the input data (xyz[1] is the total number of

trials)

 for k in range(0,xyz[2]): # loop through

all time points (xyz[2] is the total number of time points)

 # at a given trial number 'j' and time point

'k', sum up all the spike activity of existing cells and

store it as a single file

 psthdata[j, k] = psthdata[j, k] + data[i, j,

k]

 # use the half-guassian smoothiing function I defined

above to reduce noise in the data

 psthdata_flt = np.zeros((xyz[1],xyz[2])) # this is

a new numpy array to stored filtered data points from

'psthdata'

 for i in range(0,xyz[1]): # loop

through all trials in the data (xyz[1] is the total number of

trials)

 # at a given trial number 'j', use half guassian

smoothing function to reduce noise and store it in the

'psthdata_flt' array

 psthdata_flt[i] = halfgaussian_filter1d(psthdata[i],

sigma=100)

 return psthdata_flt # return smoothed

psth data

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 7/31

III. DATA VISUALIZATION

FIGURE 1. Peristimulus Time Histogram (PSTH) of Neuron Activity

This is a PSTH graph showing neuron spike activity. The first graph is representing the

activity of Deep Nucleus cells during the 500th trial, and the second graph is representing

the activity of Purkinje cells during the same trial. The x-axis is time in milliseconds, while

the y-axis is number of spikes. Dashed vertical lines are drawn to show the time points

where two stimuli is presented to the neurons, one after another. The activity displayed was

measured after 500 trials of acquisition, which means the neurons have learned the

association between the two stimuli. In the two graphs, we can see that the cells both show

a conditioned response to the stimuli. Deep Nucleus cells increase their spikes in response

to the first stimulus (conditioned stimulus), whereas Purkinje cells decrease their spikes.

This is because Purkinje cells inhibit the Deep Cerebellar Nuclei.

-------- Converting Raster Data to PSTH Data --------

convert each Purkinje cell raster data into psth data

psthfiles_pc = {} # create a new

dictionary to store Purkinje cell PSTH data

for isi in filelist: # loop through

the different ISIs that I prepraed in the 'filelist' list

above

 # code below converts each file in 'rasterfiles_pc' and

stores it as a new file in 'psthfiles_pc'

 # the key for each file will be the ISI number loaded

from the lsit 'filelist'

 psthfiles_pc[isi] = raster_to_psth(rasterfiles_pc[isi])

convert each Deep Nucleus cell raster data into psth data

psthfiles_nc = {} # create a new

dictionary to store Deep Nucleus cell PSTH data

for isi in filelist: # loop through

the different ISIs that I prepraed in the 'filelist' list

above

 # code below converts each file in 'rasterfiles_nc' and

stores it as a new file in 'psthfiles_nc'

 # the key for each file will be the ISI number loaded

from the lsit 'filelist'

 psthfiles_nc[isi] = raster_to_psth(rasterfiles_nc[isi])

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 8/31

In [6]: # -------- Defining a Function to Plot PSTH Graph -------- #

codes below define a function that plots PSTH graph from

input data

this is going to be a graph for one given trial (trial

number is set by the parameter 'trialnum')

def makepsthgraph(data, celltype, trialnum, isi, ymin, ymax):

 '''

 This function plots a PSTH graph from input data\n

 data = input PSTH file\n

 celltype = 'PC' for Purkinje cell or 'NC' for Deep

Nucleus cell\n

 trialnum = choose the trial number to plot the graph

for\n

 isi = specify the interstimulus interval of the input

PSTH data\n

 ymin = minimum y value in the axis plot\n

 ymax = maximum y value in the axis plot

 '''

 yz = data.shape

y is total number of trials, z is total number of time

points

 plt.figure(figsize=(4,2))

 plt.xlim(0,yz[1])

x axis starts at 0 and ends at total number of time points

(yz[1]), which will be 400+isi+400 as explained above

 plt.ylim(ymin, ymax)

y axis limits are set by parameter of the function

 x = np.arange(0,yz[1])

make a list of numbers from 0 to total time points (which

is going to be 400+isi+400) to create the x coordinates for

line graph

 # below are codes that plot a line graph for PSTH

 # 3 different plots are written in order to set

different colors for line graphs in different time points

 # time points where the first stimulus (conditioned

stimulus) is present has darker color

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 9/31

 # the graph until the first stimulus is presented (at 400

ms) has light color

 plt.plot(x[0:400],data[trialnum,0:400], color='#7B8387')

 # the graph between when the first stimulus is introduced

(at 400 ms) and the second stimulus is introduced (at 400+isi

ms) has dark color

 plt.plot(x[400:400+isi],data[trialnum,400:400+isi],

color='#37474F')

 # the graph after both stimuli are presented (at 400 +

isi ms) has light color

 plt.plot(x[400+isi:yz[1]],data[trialnum,400+isi:yz[1]],

color='#7B8387')

 # additional features of the graph

 plt.axvline(400, color='#BFBFBF', linestyle='dashed')

plot a vertical line at the point where the conditioned

stimulus is presented (at 400 ms)

 plt.axvline(400+isi, color='#BFBFBF', linestyle='dashed')

plot a vertical line at the point where the unconditioned

stimulus is presented (at 400+isi ms)

 plt.xlabel('time (ms)', fontsize=8)

x-axis is time in milliseconds

 plt.ylabel('spike num', fontsize=8)

y-axis is spike number (after smoothing)

 plt.xticks(fontsize=8)

 plt.yticks(fontsize=8)

 # graph title depends on the type of cell

 if celltype == 'NC':

if the cell type is 'NC' (i.e. Deep Nucleus cell)

 plt.title('Deep Nucleus Cell Activity in Trial

#'+str(trialnum)+' (ISI = '+str(isi)+')', fontsize=8)

 elif celltype == 'PC':

if the cell type is 'PC' (i.e. Purkinje cell)

 plt.title('Purkinje Cell Activity in Trial

#'+str(trialnum)+' (ISI = '+str(isi)+')', fontsize=8)

 else:

 print('[ERROR] Invalid cell type')

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 10/31

FIGURE 2. GIF of PSTH Graphs Across Trial

Using the function defined above that plots PSTH line graphs, the gif created in this section

will show how neuron activities change over trials. Again, a psth data file has neuron activity

across 1000 trials, the first 500 being acquisition trials and the following 500 being

extinction trials. With the gif, we'll be able to observe how the shape of PSTH graphs change

as the association between the two stimuli are acquired and extinguished from the neurons.

Again, the x-axis is time in milliseconds while the y-axis is number of spikes. The graph on

the top shows Deep Nucleus Cell activity, while the graph on the bottom shows Purkinje cell

activity.

if the cell type is neither 'NC' or 'PC', print this

-------- Using the Function to Plot PSTH Graphs --------

trialnum = 500 # plot PSTH graphs for trial

number 500

isi = 500 # plot PSTH graphs for files

whose interstimulus interval is 500 ms

makepsthgraph(data=psthfiles_nc[isi], celltype='NC',

trialnum=trialnum, isi=isi, ymin=-0.5, ymax=2.5)

makepsthgraph(data=psthfiles_pc[isi], celltype='PC',

trialnum=trialnum, isi=isi, ymin=-0.5, ymax=2.5)

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 11/31

In [7]: # -------- Adjusting the 'makepsthgraph' Function to be Used

for Making GIFs -------- #

codes below has a similar function to the 'makepsthgraph'

function defined in the cell above

some features of the function are deleted and added to make

it usable in the block of code that plots a gif

axnum is specified because I'll be creating a figure with

subplots

def makepsthgraph_gif(data, trialnum, isi, ymin, ymax,

axnum):

 '''

 This function plots a PSTH graph for GIFs\n

 data = input PSTH file\n

 trialnum = choose the trial number to plot the graph

for\n

 isi = specify the interstimulus interval of the input

PSTH data\n

 ymin = minimum y value in the axis plot\n

 ymax = maximum y value in the axis plot\n

 axnum = the number of the axis on which this graph

will be plotted

 '''

 # nothing is much different here compared to the

'makepsthgraph' function from before

 yz = data.shape # y is total

number of trials, z is total number of time points

 x = np.arange(0,yz[1]) # make a list

of numbers from 0 to total time points (yz[1]) to create the

x coordinates for line graph

 # I made slight changes to this part so that I can plot

two different graphs in different axis later in the gif

 axnum.set_xlim(0,yz[1]) # x axis

starts at 0 and ends at total number of time points (yz[1])

 axnum.set_ylim(ymin,ymax) # y axis

limits are set by parameter of the function

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 12/31

 # below are codes that plot a line graph for PSTH

 # again, these three plots are separated for setting

different colors for different time points

 # details are the same as the 'makepsthgraph' function

from before

 axnum.plot(x[0:400],data[trialnum,0:400],

color='#7B8387')

 axnum.plot(x[400:400+isi],data[trialnum,400:400+isi],

color='#37474F')

 axnum.plot(x[400+isi:yz[1]],data[trialnum,400+isi:yz[1]],

color='#7B8387')

-------- Making Multiple PSTH Graphs Across Trials to

Create a GIF -------- #

codes below are for making multiple PSTH plots

this is an array for storing file names of every image,

which will be used later to reference to when creating the

gif

filenames = []

this 'for loop' will:

 # loop through each trial number (from 0 to 1000, in

increments of 10)

 # plot the PSTH graph at the given trial

 # save it plotted image in local working directory under

the chosen file name

for i in range(0,1000,10):

 # plot a figure with two subplots

 # ax1 will have the PSTH graph of Deep Nucleus cells

 # ax2 will have the PSTH graph of Purkinje cells

 fig, (ax1, ax2) = plt.subplots(2, 1)

 # this 'if' function is to specify the title of the plot,

distinguishing between acquisition trials and extinction

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 13/31

trials

 # for the first 500 trials, the title will indicate

that they are acquisition trials

 # for the trials numbered 501 to 1000, the title will

indicate that they are extinciton trials

 if i <= 500:

 ax1.text(x=410, y=2.7, s='Trial #'+str(i)+' -

Acquisition', fontsize=12)

 else:

 ax1.text(x=410, y=2.7, s='Trial #'+str(i)+' -

Extinction', fontsize=12)

 # plot Deep Nucleus cell PSTH data (with isi 500) on axis

number 1

 makepsthgraph_gif(data=psthfiles_nc[500], trialnum=i,

isi=500, ymin=-0.5, ymax=2.5, axnum=ax1)

 # plot Purkinje cell PSTH data (with isi 500) on axis

number 2

 makepsthgraph_gif(data=psthfiles_pc[500], trialnum=i,

isi=500, ymin=-0.5, ymax=2.5, axnum=ax2)

 # this part is to create a dashed vertical line at the

points where the two stimuli are presented

 isi = 500

this is because the isi of the files we are using is 500 ms

 ax1.axvline(400, color='#BFBFBF', linestyle='dashed')

this is when the conditioned stimulus is presented (at 400

ms)

 ax1.axvline(400+isi, color='#BFBFBF', linestyle='dashed')

this is when the unconditioned stimulus is presented (at

400+isi ms)

 ax2.axvline(400, color='#BFBFBF', linestyle='dashed')

this is when the conditioned stimulus is presented (at 400

ms)

 ax2.axvline(400+isi, color='#BFBFBF', linestyle='dashed')

this is when the unconditioned stimulus is presented (at

400+isi ms)

 # additional features of the graph

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 14/31

 ax1.set_ylabel('spike num', fontsize=10)

set y label for graph in ax1

 ax2.set_xlabel('time (ms)', fontsize=10)

set x label for graph in ax2, we don't have to do this for

graph in ax1 because they are vertically stacked up on each

other

 ax2.set_ylabel('spike num', fontsize=10)

set y label for graph in ax2

 filename = f'{i}.png'

file name will be 'i'.png, where i is the trial number

 filenames.append(filename)

save the file name to 'filename' list we made earlier

 # save each images to the local working directory

 plt.savefig(filename)

 plt.close()

-------- Building the GIF --------

use a function from imageio library to create a gif

with imageio.get_writer('mygif.gif', mode='I', duration=0.1)

as writer:

 for filename in filenames: # loop

through each files by referencing to the 'filenames' list

created above

 image = imageio.imread(filename) # store

the image in 'image' variable

 writer.append_data(image) # append

the image to the writer, which will create a gif

-------- Removing the Files Used to Make the GIF --------

codes below will remove files that were used for the gif

from the local working directory

this is not necessary to make the gif but it helps keep the

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 15/31

/var/folders/2m/mxjq630x5psgvt__r1b0z2sr0000gn/T/ipykernel_1212/3230299049.py:
86: DeprecationWarning: Starting with ImageIO v3 the behavior of this function
will switch to that of iio.v3.imread. To keep the current behavior (and make t
his warning disappear) use `import imageio.v2 as imageio` or call `imageio.v2.
imread` directly.
 image = imageio.imread(filename) # store the image in 'image' var
iable

FIGURE 3. Graph of Purkinje Cell Activity (Minimum Spike Number) Across Trials

local folder clean

for filename in set(filenames): # loop

through each files by referencing to the 'filenames' list

created above

 os.remove(filename) # remove

the file

-------- Displaying the GIF --------

codes below will display the created gif in jupyter

notebook

with open('mygif.gif','rb') as file:

 display(Image(data=file.read(), format='png'))

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 16/31

In order to compute the rate of acquisition and rate of extinction, I took the minimum spike

number of the Purkinje cells from each trial. This is because Purkinje cells were observed to

drastically decrease their spike numbers during conditioned response. In other words, when

the neurons learn the association between the two stimuli, it starts decreasing their spikes

right after the first stimuli is presented. By finding the minimum point of spike number, we

can analyze whether learning has occured or not and by how much.

I plotted a series of line graphs that display the change of minimum spike activity in Purkinje

cells across trials. There are 10 subplots in total. Each column represents data from different

interstimulus intervals (i.e. 250 ms, 500 ms, 750 ms, 1000 ms, and 1250 ms). Within a single

isi data, the graph on top represents how minimum spike number changes during acquisition

trials and the graph on bottom represents how minimum spike number changes during

extinction trials. The x-axis in each graph is trial number and the y-axis is minimum spike

number of that given trial.

Overall, during acquisition trials, we can observe that the minimum spike number of Purkinje

cells gradually decrease over trial. Decrease means that the neurons learned the association.

During extinction trials, minimum spike number of Purkinje cells gradually increase as they

extinguish the learned association. I plotted vertical dashed lines to highlight the time points

where complete acquisition or complete extinction happens.

In [8]: # -------- Defining a Function to Plot Purkinje Cell Activity

Across Trials -------- #

this function plots a graph of minimum spike number across

trials

x-axis is each trial and y-axis is minimum spike number of

that given trial

this function is for Purkinje cell PSTH data

def minspikegraph_subplot(data, isi, start_trial, end_trial,

vertical_line, axnum):

 '''

 This function plots minimum spike number of Purkinje

cells during each trial\n

 data = input PSTH file\n

 isi = specify the interstimulus interval of the input

PSTH data\n

 start_trial = specify the first trial number to plot in

the graph\n

 end_trial = specify the last trial number to plot in the

graph\n

 vertical_line = x coordinate of the vertical dashed line

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 17/31

which indicates where complete acquisition/extinction

happens\n

 axnum = the index of the axis on which this graph will be

plotted

 '''

 num_trial = end_trial - start_trial

calculate the total number of trials to plot

 min_spikes = np.zeros(num_trial)

make an array with the size of total number of trials to

plot

 for i in range(0, num_trial):

 # find the minimum spike number of Purkinje cells

after the stimulus was presented (400 ms ~) and store it in

the variable 'min_spike'

 min_spike = min(data[i+start_trial, 400:400+isi+400])

 min_spikes[i] = min_spike

store the 'min_spike' of each trial to the array

'min_spikes'

 x = np.arange(start_trial, end_trial)

this array is for the x coordinates of the data

 # additional features of the graph

 axnum.set_xlabel('trial num', fontsize=8)

x-axis label

 axnum.set_ylabel('minimum spike num', fontsize=8)

y-axis label

 axnum.tick_params(labelsize=8)

label font size

 # plotting dashed lines to help the viewers interpret

data

 axnum.axhline(1.77, color='#BFBFBF', linestyle='dashed')

horizontal line to show the baseline spike number when

neuron has not learned

 axnum.axhline(0, color='#BFBFBF', linestyle='dashed')

horizontal line to show the spike number when neuron has

learned the association

 axnum.axvline(vertical_line, color='#BFBFBF',

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 18/31

linestyle='dashed') # vertical line to highlight the trial

number where acquisition/extinciton happens

 # plotting the line graph

 axnum.plot(x, min_spikes, color='#37474F')

-------- Using the Function to Plot Purkinje Cell Activity

Across Trials -------- #

make a figure that has subplots of 2 rows and 5 columns

 # each column will be data from different ISI

 # top row will be graphs during acquisition

 # bottom row will be graphs during extinction

fig, (axs) = plt.subplots(2, 5, figsize=(20,4))

fig.tight_layout(pad=1)

title of the entire graph

axs[0][2].text(-170, 2.5, 'Purkinje Cell Spike Activity

During Acquisition and Extinction', fontsize=12)

titles to indicate graphs from different ISIs

axs[0][0].set_title('Interstimulus Interval: 250 ms',

fontsize=10)

axs[0][1].set_title('Interstimulus Interval: 500 ms',

fontsize=10)

axs[0][2].set_title('Interstimulus Interval: 750 ms',

fontsize=10)

axs[0][3].set_title('Interstimulus Interval: 1000 ms',

fontsize=10)

axs[0][4].set_title('Interstimulus Interval: 1250 ms',

fontsize=10)

codes below make subplots of Purkinje cell activity graphs

the x coordinates of vertical lines were determined by

visual inspection of the trial number where the graph reaches

acquisition/extinction

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 19/31

plotting the graph for when the interstimulus interval is

250 ms

isi = 250

acquisition trial graph

minspikegraph_subplot(data=psthfiles_pc[isi], isi=isi,

start_trial=0, end_trial=500, vertical_line=250, axnum=axs[0]

[0])

extinction trial graph

minspikegraph_subplot(data=psthfiles_pc[isi], isi=isi,

start_trial=500, end_trial=1000, vertical_line=765,

axnum=axs[1][0])

plotting the graph for when the interstimulus interval is

500 ms

isi = 500

acquisition trial graph

minspikegraph_subplot(data=psthfiles_pc[isi], isi=isi,

start_trial=0, end_trial=500, vertical_line=110, axnum=axs[0]

[1])

extinction trial graph

minspikegraph_subplot(data=psthfiles_pc[isi], isi=isi,

start_trial=500, end_trial=1000, vertical_line=580,

axnum=axs[1][1])

plotting the graph for when the interstimulus interval is

750 ms

isi = 750

acquisition trial graph

minspikegraph_subplot(data=psthfiles_pc[isi], isi=isi,

start_trial=0, end_trial=500, vertical_line=110, axnum=axs[0]

[2])

extinction trial graph

minspikegraph_subplot(data=psthfiles_pc[isi], isi=isi,

start_trial=500, end_trial=1000, vertical_line=570,

axnum=axs[1][2])

plotting the graph for when the interstimulus interval is

1000 ms

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 20/31

FIGURE 4. Linear Regression Analysis for Rates of Acquisition and Extinction in Purkinje Cells

In FIGURE 3., we were able to obtain the trial numbers where acquisition and extinction

happens in Purkinje cells across different interstimulus intervals. Using this information, I

conducted a linear regression analysis to examine the rates of acquisition and extinction in

each case. The figure in this section visualizes the linear regression lines that represent

acquisition and extinction rates.

Just like FIGURE 3., there are 10 subplots in this figure. Each column of subplots represent

data from different ISIs. The top graph shows the acquisition trials from that ISI, while the

bottom graph shows the extinction trials from that ISI. The x-axis is trial number and y-axis is

minimum spike number of Purkinje cells at each trial. Unlike FIGURE 3., the minimum spike

numbers from each trial are plotted as scatter plots. Regression lines are superimposed in a

darker color.

isi = 1000

acquisition trial graph

minspikegraph_subplot(data=psthfiles_pc[isi], isi=isi,

start_trial=0, end_trial=500, vertical_line=130, axnum=axs[0]

[3])

extinction trial graph

minspikegraph_subplot(data=psthfiles_pc[isi], isi=isi,

start_trial=500, end_trial=1000, vertical_line=590,

axnum=axs[1][3])

plotting the graph for when the interstimulus interval is

1250 ms

isi = 1250

acquisition trial graph

minspikegraph_subplot(data=psthfiles_pc[isi], isi=isi,

start_trial=0, end_trial=500, vertical_line=335, axnum=axs[0]

[4])

extinction trial graph

minspikegraph_subplot(data=psthfiles_pc[isi], isi=isi,

start_trial=500, end_trial=1000, vertical_line=565,

axnum=axs[1][4])

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 21/31

In [9]: # -------- Defining a Function to Plot Rates of Acquisition

and Extinction -------- #

def spikeregression_subplot(data, isi, reg_start_trial,

reg_end_trial, plot_start_trial, plot_end_trial, axnum):

 '''

 This function plots linear regression lines above the

original graph of minimum spike number of Purkinje cells\n

 data = input PSTH file\n

 isi = specify the interstimulus interval of the input

PSTH data\n

 reg_start_trial = specify the first trial number to

conduct the regression analysis\n

 reg_end_trial = specify the last trial number to conduct

the regression analysis\n

 plot_start_trial = specify the first trial number to plot

in the graph\n

 plot_end_trial = specify the last trial number to plot in

the graph\n

 axnum = the index of the axis on which this graph will be

plotted

 '''

 num_trial = plot_end_trial - plot_start_trial

calculate the total number of trials to plot

 min_spikes = np.zeros(num_trial)

make an array with the size of total number of trials to

plot

 for i in range(0, num_trial):

 # find the minimum spike number of Purkinje cells

after the stimulus was presented (400 ms ~) and store it in

the variable 'min_spike'

 min_spike = min(data[i+plot_start_trial,

400:400+isi+400])

 min_spikes[i] = min_spike

store the 'min_spike' of each trial to the array

'min_spikes'

 x = np.arange(reg_start_trial, reg_end_trial)

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 22/31

this array is for the x coordinates of regression analysis

data

 x = x.reshape(-1,1)

reshape into this format because that's how the 'reg.fit()'

function likes it

 # store a subset of the 'min_spikes' array into 'regdata'

variable

 # this variable stores the minimum spike number for the

trials that we're doing a regression analysis on

 regdata = min_spikes[reg_start_trial -

plot_start_trial:reg_end_trial -

plot_start_trial].reshape(-1, 1)

 # codes below are for linear regressiona analysis

 reg = LinearRegression()

 reg.fit(x, regdata)

conduct linear regression analysis using 'regdata' subset

of 'min_spikes'

 regdata_pred = reg.predict(x)

store the fitted prediction line

 plot_x = np.arange(plot_start_trial, plot_end_trial)

this array is for the x coordinates of the data to plot

 axnum.scatter(plot_x, min_spikes, s=1, color='#7B8387')

scatter plot the minimum spike number for each trial number

 axnum.plot(x, regdata_pred, color='#37474F')

plot the fitted prediction line graph

 # additional features of the graph

 axnum.set_xlabel('trial num', fontsize=8)

x-axis label

 axnum.set_ylabel('minimum spike num', fontsize=8)

y-axis label

 axnum.tick_params(labelsize=8)

label font size

 axnum.set_ylim(-0.1, 1.87)

y-axis limits

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 23/31

 # plot vertical dashed lines at the trial numbers where

regression analysis started and ended

 axnum.axvline(reg_start_trial, color='#BFBFBF',

linestyle='dashed')

 axnum.axvline(reg_end_trial, color='#BFBFBF',

linestyle='dashed')

-------- Using the Function to Plot Rates of Acquisition

and Extinction -------- #

make a figure that has subplots of 2 rows and 5 columns

 # each column will be data from different ISI

 # top row will be graphs during acquisition

 # bottom row will be graphs during extinction

fig, (axs) = plt.subplots(2, 5, figsize=(20,4))

fig.tight_layout(pad=1)

title of the entire graph

axs[0][2].text(-170, 2.5, 'Regression Analysis for Rates of

Acquisition and Extinction', fontsize=12)

titles to indicate graphs from different ISIs

axs[0][0].set_title('Interstimulus Interval: 250 ms',

fontsize=10)

axs[0][1].set_title('Interstimulus Interval: 500 ms',

fontsize=10)

axs[0][2].set_title('Interstimulus Interval: 750 ms',

fontsize=10)

axs[0][3].set_title('Interstimulus Interval: 1000 ms',

fontsize=10)

axs[0][4].set_title('Interstimulus Interval: 1250 ms',

fontsize=10)

codes below make subplots using the

'spikeregression_subplot' function defined above

the points of acquisition/extinction gathered from FIGURE

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 24/31

3. were used to determine the trial numbers to do regression

analysis on

plotting the graph for when the interstimulus interval is

250 ms

isi = 250

acquisition trial graph

spikeregression_subplot(data=psthfiles_pc[isi], isi=isi,

reg_start_trial=0, reg_end_trial=250, plot_start_trial=0,

plot_end_trial=500, axnum=axs[0][0])

extinction trial graph

spikeregression_subplot(data=psthfiles_pc[isi], isi=isi,

reg_start_trial=500, reg_end_trial=765, plot_start_trial=500,

plot_end_trial=1000, axnum=axs[1][0])

plotting the graph for when the interstimulus interval is

500 ms

isi = 500

acquisition trial graph

spikeregression_subplot(data=psthfiles_pc[isi], isi=isi,

reg_start_trial=0, reg_end_trial=110, plot_start_trial=0,

plot_end_trial=500, axnum=axs[0][1])

extinction trial graph

spikeregression_subplot(data=psthfiles_pc[isi], isi=isi,

reg_start_trial=500, reg_end_trial=580, plot_start_trial=500,

plot_end_trial=1000, axnum=axs[1][1])

plotting the graph for when the interstimulus interval is

750 ms

isi = 750

acquisition trial graph

spikeregression_subplot(data=psthfiles_pc[isi], isi=isi,

reg_start_trial=0, reg_end_trial=110, plot_start_trial=0,

plot_end_trial=500, axnum=axs[0][2])

extinction trial graph

spikeregression_subplot(data=psthfiles_pc[isi], isi=isi,

reg_start_trial=500, reg_end_trial=570, plot_start_trial=500,

plot_end_trial=1000, axnum=axs[1][2])

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 25/31

FIGURE 5. Acquisition and Extinction Rates in Trials with Different Interstimulus Intervals

Finally, using information gathered from FIGURE 3. and FIGURE 4., I made a grouped bar plot

showing the acquisition and extinction rates from trials with different ISIs. Acquisition and

extinction rates were obtained using slope coefficient values from linear regression analysis

in FIGURE 4. Light-colored bars show the acquisition rates and dark-colored bars show the

extinction rates. The x-axis is different ISIs and y-axis is slope coefficient. Higher y value

means the acquisition/extinction happened in a higher rate.

plotting the graph for when the interstimulus interval is

1000 ms

isi = 1000

acquisition trial graph

spikeregression_subplot(data=psthfiles_pc[isi], isi=isi,

reg_start_trial=0, reg_end_trial=130, plot_start_trial=0,

plot_end_trial=500, axnum=axs[0][3])

extinction trial graph

spikeregression_subplot(data=psthfiles_pc[isi], isi=isi,

reg_start_trial=500, reg_end_trial=590, plot_start_trial=500,

plot_end_trial=1000, axnum=axs[1][3])

plotting the graph for when the interstimulus interval is

1250 ms

isi = 1250

acquisition trial graph

spikeregression_subplot(data=psthfiles_pc[isi], isi=isi,

reg_start_trial=0, reg_end_trial=335, plot_start_trial=0,

plot_end_trial=500, axnum=axs[0][4])

extinction trial graph

spikeregression_subplot(data=psthfiles_pc[isi], isi=isi,

reg_start_trial=500, reg_end_trial=565, plot_start_trial=500,

plot_end_trial=1000, axnum=axs[1][4])

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 26/31

In [10]: # -------- Defining a Function to Get Slope Coefficient from

Linear Regression Analysis -------- #

def get_regressioncoef(data, start_trial, end_trial):

 '''

 This function conducts linear regression and calculates

the slope coefficient of values between given start trial

number and end trial number\n

 data = input PSTH file\n

 start_trial = specify the first trial number to conduct

the regression analysis\n

 end_trial = specify the last trial number to conduct the

regression analysis

 '''

 num_trial = end_trial - start_trial

calculate the total number of trials to do regression

analysis

 min_spikes = np.zeros(num_trial)

make an array with the size of total number of trials to

plot

 for i in range(0, num_trial):

 # find the minimum spike number of Purkinje cells

after the stimulus was presented (400 ms ~) and store it in

the variable 'min_spike'

 min_spike = min(data[i+start_trial, 400:400+isi+400])

 min_spikes[i] = min_spike

store the 'min_spike' of each trial to the array

'min_spikes'

 x = np.arange(start_trial, end_trial)

this array is for the x coordinates of regression analysis

data

 x = x.reshape(-1,1)

reshape into this format because that's how the 'reg.fit()'

function likes it

 regdata = min_spikes.reshape(-1, 1)

reshape into this format because that's how the 'reg.fit()'

function likes it

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 27/31

 # codes below are for linear regressiona analysis

 reg = LinearRegression()

 reg.fit(x, regdata)

 # return slope coefficient

 return reg.coef_

-------- Using the Function to Obtain Rates of Acquisition

and Extinction -------- #

reg_coefs = {} # create a dictionary

to store slope coefficients

for isi in filelist: # loop through the

different ISIs that I prepared in the 'filelist' list above

 reg_coefs[isi] = np.zeros(2) # using isi as key,

each value will be a list of 2 elements (acquisition rate,

extinction rate)

plotting the graph for when the interstimulus interval is

250 ms

isi = 250

calculate acquisition rate and store it as first element in

the value

reg_coefs[isi][0] =

get_regressioncoef(data=psthfiles_pc[isi], start_trial=0,

end_trial=250)[0,0]

calculate extinction rate and store it as second element in

the value

reg_coefs[isi][1] =

get_regressioncoef(data=psthfiles_pc[isi], start_trial=500,

end_trial=765)[0,0]

plotting the graph for when the interstimulus interval is

500 ms

isi = 500

calculate acquisition rate and store it as first element in

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 28/31

the value

reg_coefs[isi][0] =

get_regressioncoef(data=psthfiles_pc[isi], start_trial=0,

end_trial=110)[0,0]

calculate extinction rate and store it as second element in

the value

reg_coefs[isi][1] =

get_regressioncoef(data=psthfiles_pc[isi], start_trial=500,

end_trial=580)[0,0]

plotting the graph for when the interstimulus interval is

750 ms

isi = 750

calculate acquisition rate and store it as first element in

the value

reg_coefs[isi][0] =

get_regressioncoef(data=psthfiles_pc[isi], start_trial=0,

end_trial=110)[0,0]

calculate extinction rate and store it as second element in

the value

reg_coefs[isi][1] =

get_regressioncoef(data=psthfiles_pc[isi], start_trial=500,

end_trial=570)[0,0]

plotting the graph for when the interstimulus interval is

1000 ms

isi = 1000

calculate acquisition rate and store it as first element in

the value

reg_coefs[isi][0] =

get_regressioncoef(data=psthfiles_pc[isi], start_trial=0,

end_trial=130)[0,0]

calculate extinction rate and store it as second element in

the value

reg_coefs[isi][1] =

get_regressioncoef(data=psthfiles_pc[isi], start_trial=500,

end_trial=590)[0,0]

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 29/31

plotting the graph for when the interstimulus interval is

1250 ms

isi = 1250

calculate acquisition rate and store it as first element in

the value

reg_coefs[isi][0] =

get_regressioncoef(data=psthfiles_pc[isi], start_trial=0,

end_trial=335)[0,0]

calculate extinction rate and store it as second element in

the value

reg_coefs[isi][1] =

get_regressioncoef(data=psthfiles_pc[isi], start_trial=500,

end_trial=565)[0,0]

-------- Using the Calculated Rates of Acquisition and

Extinction to Make Grouped Bar Plot -------- #

fig, ax = plt.subplots(figsize=(4,2))

x = np.array(filelist) # make an

array of ISIs to use as x coordinates

width = 45 # set width

of each bar plot

acq_coefs = [] # make a list

to store slope coefficients for acquisition rates

for isi in filelist: # loop

through different ISIs

 acq_coefs.append(abs(reg_coefs[isi][0])) # grab

acquisition rates from the 'reg_coefs' dictionary created

above and append it to the 'acq_coefs' list

ext_coefs = [] # make a list

to store slope coefficients for extinction rates

for isi in filelist: # loop

through different ISIs

 ext_coefs.append(reg_coefs[isi][1]) # grab

extinction rates from the 'reg_coefs' dictionary created

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 30/31

Text(0.5, 1.0, 'Acquisition and Extinction Rates')

STATISTICAL COMPARISON

To investigate whether there is a significant statistical difference between rates of

acquisition and rates of extinction across trials with different ISI, I conducted a paired t-test.

The null hypothesis is that there are no difference between the rates of acquisition and

extinction. According to the paired t-test result, I failed to reject the null hypothesis (t=0.01,

p=0.99). There was no significant difference between rates of acquisition and extinction.

above and append it to the 'ext_coefs' list

rects1 = ax.bar(x - width/2, acq_coefs, width,

label='Acquisition', color='#BFBFBF') # plot bar plots

for acquisition rate

rects2 = ax.bar(x + width/2, ext_coefs, width,

label='Extinction', color='#7B8387') # plot bar plots

for extinction rate

additional features of the graph

ax.set_xticks(filelist)

ax.tick_params(labelsize=8)

ax.set_xlabel('Interstimulus Interval (ms)', fontsize=8)

x-axis label

ax.set_ylabel('Slope Coefficient', fontsize=8)

y-axis label

ax.legend(prop={'size': 8})

make a legend

ax.set_title('Acquisition and Extinction Rates', fontsize=8)

title of the graph

Out[10]:

In [11]: stats.ttest_rel(acq_coefs, ext_coefs)

3/12/23, 8:09 PM FinalProject_EllieKim

file:///Users/elliekim/Downloads/FinalProject_EllieKim.html 31/31

Ttest_relResult(statistic=0.010965481997950362, pvalue=0.9917760945121041)

IV. DISCUSSION

Overall, I learned that the patterns of acquisition and extinction vary greatly by ISI. Although

rates of acquisition and extinction differed within a single ISI data, there was no significant

pattern of difference when datasets from all ISI were used to conduct a paired t-test.

In FIGURE 3., there was a slight pattern where, as the interstimulus interval of the data

increased, the number of trials to get to extinction decreased, which means extinction

happened relatively faster. Except for ISI 250 ms, the number of trials to get to acquisition

increased as ISI increased as well. However, this pattern was not directly represented in my

acquisition/extinction rate analysis, since I conducted linear regression analysis that takes

the y-axis (minimum spike num) into account as well as the x-axis (trial number).

In FIGURE 5., the rates of acquisition and extinction tend to decrease as ISI increases,

although the trial with ISI 250 ms did not fit this pattern.

In conclusion, no significant difference in the rates of acquisition and extinction were found

from my analysis. Instead, interesting differences in acquisition/extinction rates among

different ISIs were revealed.

A limitation of my analysis was that I had only 1 data file from each interstimulus intervals.

Having higher number of datsets would have helped the statistical comparison. Paired t-test

analysis could have yielded a more significant result if I had gathered multiple data from

each ISI. Future studies could be done by gathering multiple datasets and conducting further

statistical analysis using ANOVA test or paired t-test.

Out[11]:

